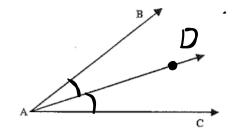
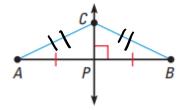

Perpendiculars and Bisectors

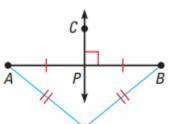

❖ Review → A <u>segment bisector</u> intersects a segment at its midpoint.

Vocabulary!!

• <u>Perpendicular Bisector</u> – a segment, ray, line or plane that is <u>Der Donnt</u> to a segment at its <u>Mi appint</u>.


- A point is **equidistant** from two figures if the point is the **Scart of the point** from each figure.
- Angle Bisector A YOU that divides an angle into two adjacent angles that are CONGNAL.

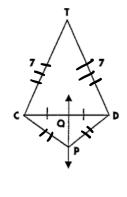
Perpendicular Bisector Theorem


If a point is on the **perpendicular bisector** of a segment, then it is **equidistant** from the endpoints of the segment.

If \overrightarrow{CP} is the \perp bisector of \overline{AB} , then

Converse of the Perpendicular Bisector Theorem

If a point is **equidistant** from the endpoints of a segment, then it is on the **perpendicular bisector** of the segment.



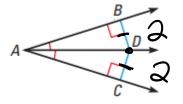
If
$$DA = DB$$
, then

DIS on I bisector of AB

- **Ex 1** Given: \overrightarrow{PQ} is the perpendicular bisector of \overline{CD} .
- a.) Which segments are congruent?

b.) Explain why we know T is on \overrightarrow{PQ} (without extending \overrightarrow{PQ})?

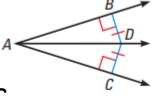
T is equidistant to


❖ Review → The distance from a point to a line is the length of the perpendicular segment from the point to the line.

Angle Bisector Theorem

If a point is on the **angle bisector** then it is **equidistant** from the SIDES of the angle.

If \overrightarrow{AD} bisects $\angle BAC$ and $\overrightarrow{DB} \perp \overrightarrow{AB}$ and $\overrightarrow{DC} \perp \overrightarrow{AC}$,

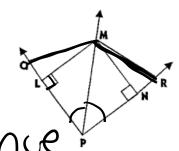




Converse to Angle Bisector Theorem

If a point is on the interior of an angle and it is **equidistant** from the SIDES, then it is on the **angle bisector** of the angle.

If $\overrightarrow{DB} \perp \overrightarrow{AB}$ and $\overrightarrow{DC} \perp \overrightarrow{AC}$ and $\overrightarrow{DB} = \overrightarrow{DC}$,



- **Ex 2** Given: \overrightarrow{PM} is the angle bisector of $\angle LPN$.
- a.) What is the relationship between ∠LPM and ∠NPM?

LLPM = LNPM

b.) How is the distance between M and \overrightarrow{PL} related to the distance between point M and \overrightarrow{PN} ?

The same Distance

c.) Since \overrightarrow{PM} is the angle bisector, is $\overrightarrow{QM} \cong \overrightarrow{RM}$?